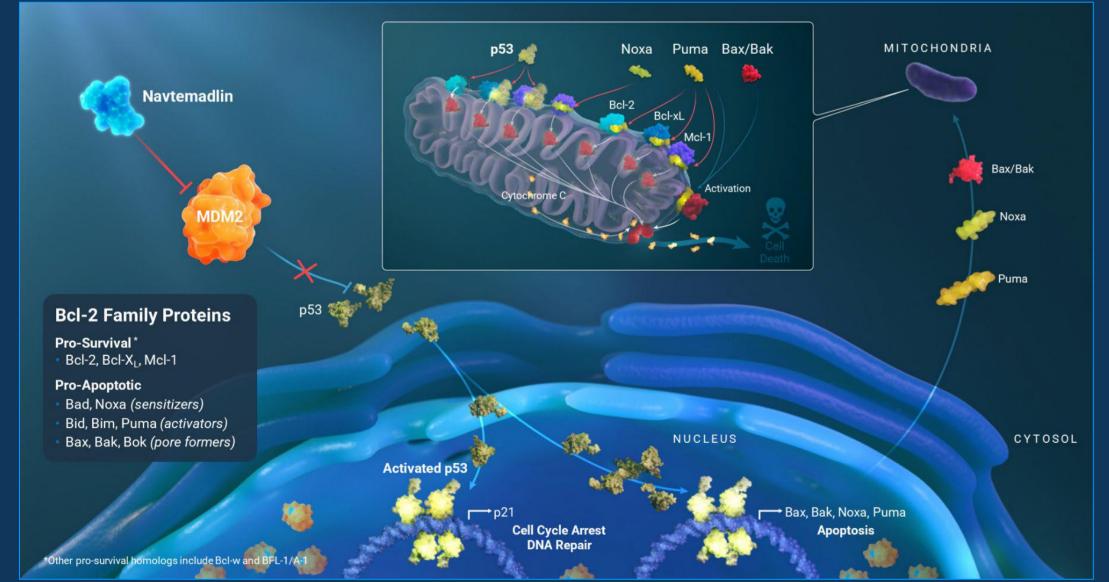
POIESIS: A Randomized, Double-Blind, Placebo-Controlled, Multicenter, Global, Phase 3 Study of Navtemadlin as Add-On Therapy to Ruxolitinib in JAK Inhibitor-Naïve Patients With Myelofibrosis Who Have a Suboptimal Response to Ruxolitinib Treatment

Pankit Vachhani, MD¹; Raajit Rampal, MD, PhD²; Terrence Bradley, MD³; Claire Harrison, MD, FRCP, FRCPath⁴; Tania Jain, MD⁵; Andrew T. Kuykendall, MD6; Francesca Palandri, MD, PhD²; John O. Mascarenhas, MD8; Standard Control of the Haifa Kathrin Al-Ali, MD, PhD⁹; Francesco Passamonti, MD¹⁰; Anna Nekhymchuk, MD¹¹; Hilarie Foss, RN, BSN¹¹; Wayne Rothbaum, MA¹¹; Srdan Verstovsek, MD, PhD¹¹; and Florian Heidel, MD¹²

¹0'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL; ²Memorial Sloan Kettering Cancer Center, New York, NY; ³University of Miami Sylvester Comprehensive Cancer Center, Miami, FL; ⁴Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom; ⁵Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD; ⁶Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL; ⁷IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola-Malpighi, Istituto di Ematologia "Seràgnoli", Bologna, Italy; 8Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY; 9Krukenberg Cancer Center Halle, University Hospital Halle, University Hospital Halle, University Hospital Halle, Halle (Saale), Germany; 10S.C. Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico and Dipartimento di Oncologia ed Onco-Ematologia, Università degli Studi di Milano, Milan, Italy; 11 Kartos Therapeutics, Inc., Redwood City, CA; 12 Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany

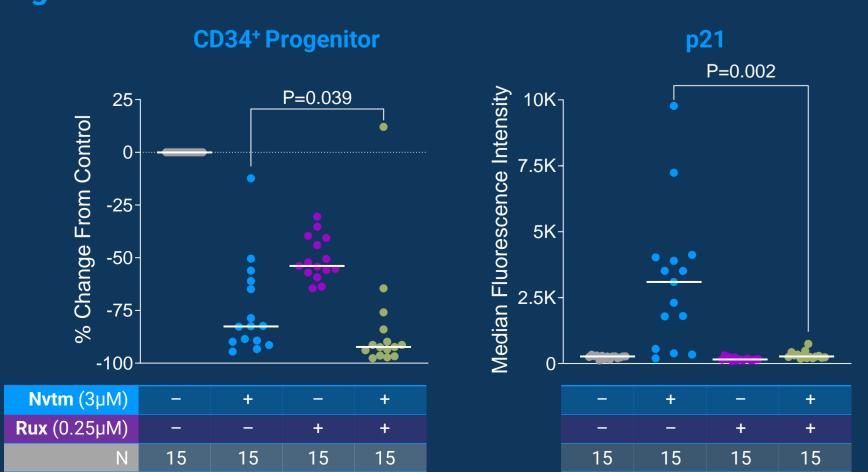
Introduction


An Unmet Need in Myelofibrosis – Ruxolitinib Suboptimal Responder

- Myelofibrosis (MF) is a clonal myeloproliferative neoplasm characterized by progressive bone marrow fibrosis, splenomegaly, constitutional symptoms, and increased risk of leukemic transformation¹
- Ruxolitinib, a Janus kinase inhibitor (JAKi), can improve MF-related splenomegaly and symptoms, however many treated patients fail to achieve an optimal response: spleen volume reduction ≥ 35% (SVR35) and total symptom score reduction $\geq 50\%$ (TSS50)^{2,3}
- Maximizing SVR and TSS reduction is critical to optimizing clinical outcomes as improvement in quality of life is correlated with overall survival (OS)^{4,5,6}
- Novel approaches are urgently needed for MF patients who have a suboptimal response to ruxolitinib treatment

Navtemadlin Inhibits MDM2 to Restore p53 Function

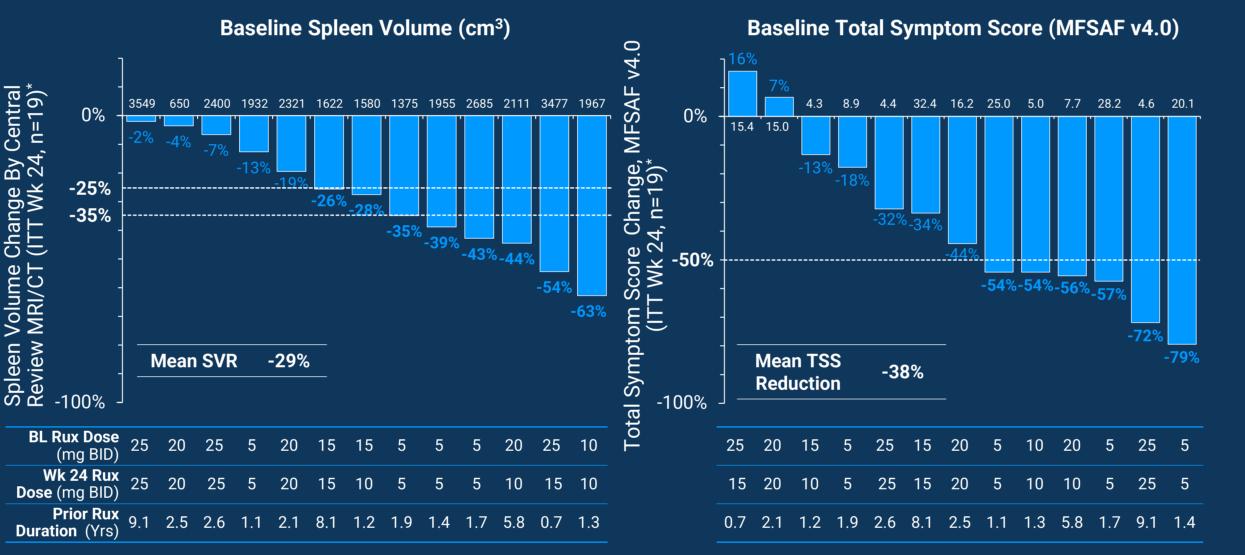
- MF is characterized by overexpression of mouse double minute 2 (MDM2) in malignant CD34⁺ progenitor cells⁷
- MDM2 suppresses tumor protein 53 (p53) function by directly inhibiting its transcriptional activity, transporting it out of the nucleus, and tagging it for proteasomal degradation⁸⁻¹⁰
- Navtemadlin is a potent inhibitor of MDM2 that restores p53 function, modulates B-cell lymphoma 2 (Bcl-2) family proteins, and induces apoptosis in TP53WT CD34+ MF progenitors by overcoming MDM2 dysregulation¹¹ (Figure 1)


Figure 1: Navtemadlin Mechanism of Action

Synergy of Navtemadlin and Ruxolitinib

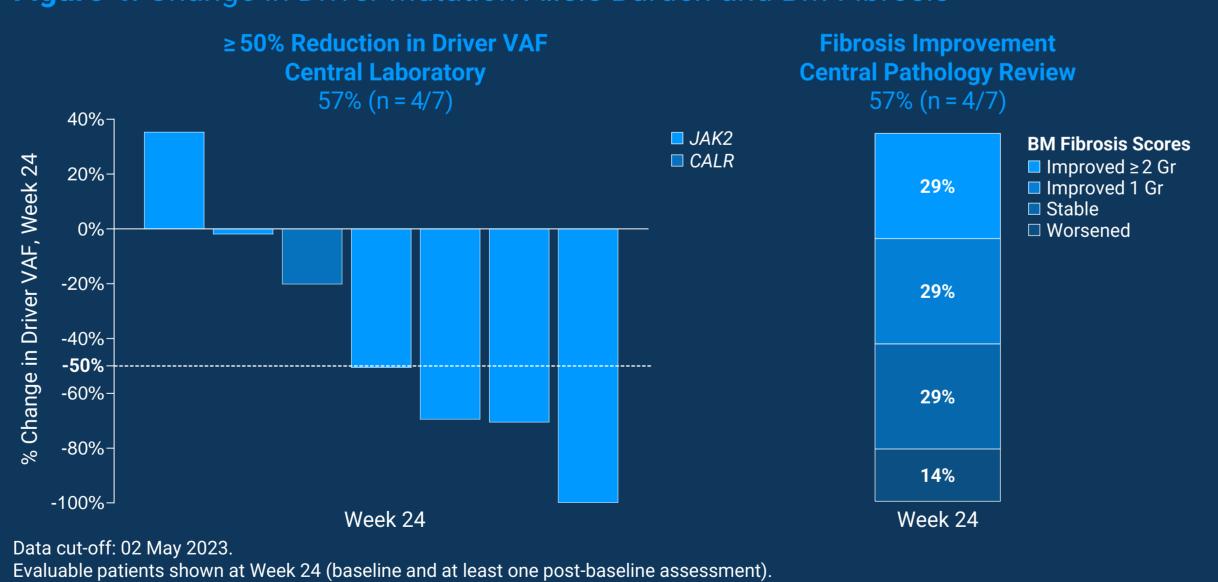
 Nonclinical data demonstrated unique CD34+ cell-killing synergy when navtemadlin was added to ruxolitinib via the suppression of p21, a critical anti-apoptotic checkpoint of p53 (Figure 2)¹¹

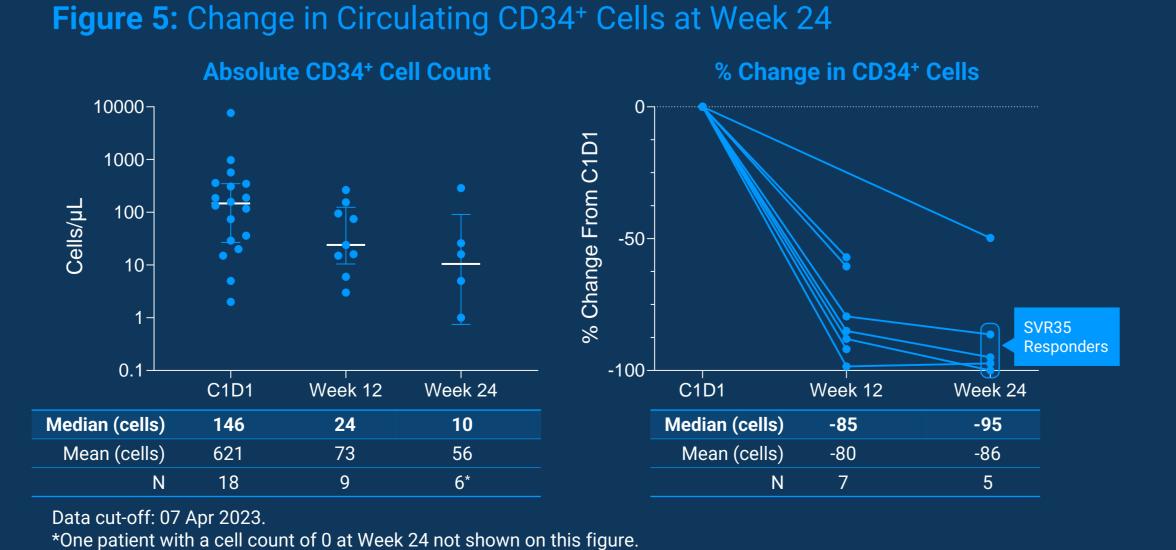
Figure 2: Navtemadlin Added to Ruxolitinib in MF Patient Samples



Cell survival and protein expression in MF patient samples after 72h of exposure to navtemadlin, ruxolitinib or the combination. In vivo C_{max}: navtemadlin 2.7 μM (~240 mg QD); ruxolitinib 0.25 μM (~5 mg QD).

Proof-of-Concept for Add-On Navtemadlin to Ruxolitinib


- In a Phase 1b/2 study in MF patients with a suboptimal response to ruxolitinib, add-on navtemadlin (240 mg QD Days 1-7 / 28-day cycle) demonstrated clinically meaningful reductions in spleen volume and improvements in quality of life¹² at Week 24 (Figure 3):
- SVR35 of 32% and TSS50 of 32%
- Combination treatment was well tolerated with a manageable safety profile
- Marked reductions in bone marrow fibrosis, driver mutation allele burden igure 4), and circulating CD34⁺ cell counts (Figure 5) demonstrated potential disease modification
- These data provide strong rationale to further investigate this novel combination in a phase 3 study in MF patients with a suboptimal response to ruxolitinib


Figure 3: SVR and TSS Reduction at Week 24 in KRT-232-109

Data cut-off: 02 May 2023. Median time on ruxolitinib monotherapy was 21.6 months Baseline spleen volume MRI/CT scans and TSS assessments were taken while subjects were on a stable dose of ruxolitinib for ≥8 weeks (ie. no ruxolitinib wash-out). No dose increases of ruxolitinib above the stable baseline dose occurred during the 24-week assessment period. *Six patients discontinued prior to Week 24 assessment.

Figure 4: Change in Driver Mutation Allele Burden and BM Fibrosis

Methods

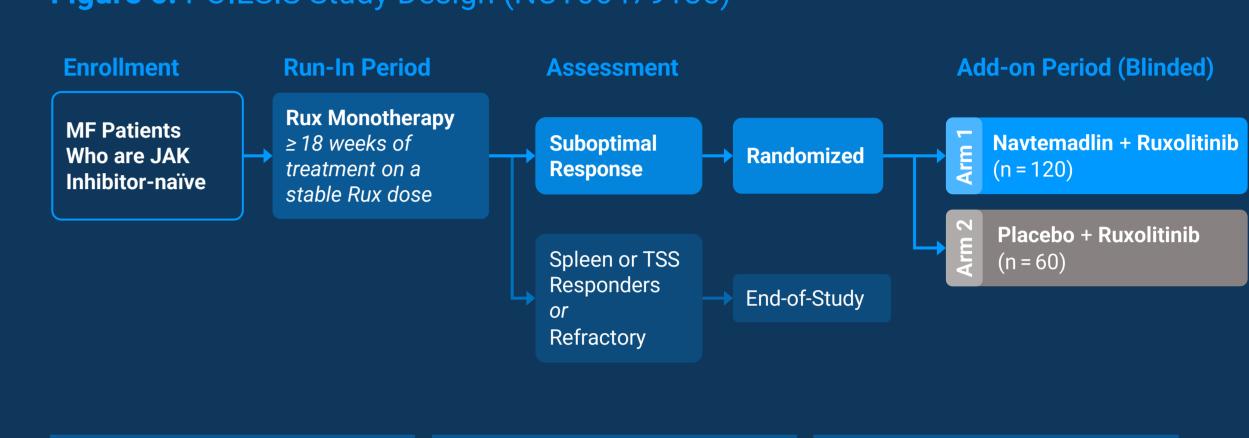
POIESIS Study Design

- POIESIS (P53 activation to OptimizE responses in Myelofibrosis) is a randomized, double-blind, placebo-controlled, global, phase 3 trial comparing add-on navtemadlin (240 mg QD *Days 1-7 / 28-day cycle*) versus add-on placebo to ruxolitinib in MF patients with a suboptimal response to ruxolitinib (F
- POIESIS incorporates a novel design that aligns with clinical practice for treating JAKi-naïve MF patients (treat with add-on therapy when needed) and comprises two treatment periods:
- Run-in Period: JAKi-naïve patients treated with ruxolitinib monotherapy for 18 weeks to identify suboptimal responders (SVR > 0% but < 35% and TSS reduction > 0% but < 50%)
- Add-on Period: Suboptimal responders are randomized to either add-on navtemadlin or add-on placebo
- Key eligibility criteria for each treatment period are shown in Table 1
- The co-primary endpoints are targeted SVR and TSS reduction 24 weeks after randomization
- This global study is active and enrolling (Figure 7)

Table 1: Key Inclusion and Exclusion Criteria

Run-In Period

Key Inclusion Criteria


- Primary or secondary MF by WHO criteria
- Intermediate-1 / 2, or High-risk disease by IPSS ECOG performance status ≤ 2
- Spleen volume ≥ 450 cm³ by central review MRI/CT
- Total symptom score of ≥ 10 by MFSAF v4.0
- Adequate hematologic function (ANC $\geq 1.5 \times 10^9/L$, platelet count $\geq 100 \times 10^9/L$, and WBC $\leq 50 \times 10^9/L$)

Key Exclusion Criteria

- Splenic irradiation within three months
- Prior ASCT or ASCT eligible
- Peripheral blood or bone marrow blast count ≥ 10%
- Active serious infection or uncontrolled intercurrent illness

Figure 6: POIESIS Study Design (NCT06479135)

Pankit Vachhani: pvachhani@uabmc.edu

For more information, please contact the corresponding author:

rimary Enupoints	Secondary Endpoints		
geted SVR by central review	 Overall survival 		
I/CT	 Progression-free sur 		

Targeted TSS by MFSAF v4.0

- Duration of spleen response
- SVR from run-in
- TSS reduction from run-in Stable dose of ruxolitinib

Stratification Factors

Stable ruxolitinib is ≥ 5 mg BID that does not require treatment hold or dose adjustment during the eight weeks prior to add-on navtemadlin or placebo. Note: Navtemadlin dosed at 240 mg QD Days 1-7/28-day cycle.

Add-On Period

Key Inclusion Criteria

- TP53WT by central testing
- ECOG performance status ≤ 2
- Treatment with a stable dose of ruxolitinib
- Suboptimal response to ruxolitinib run-in (SVR > 0% but < 35% and TSS reduction > 0% but < 50%)
- Adequate hematologic function (ANC ≥ 1.5 × 10⁹/L and platelet count $\geq 100 \times 10^9/L$)

Key Exclusion Criteria

- WBC increase \geq 2-fold and > 50 \times 10 $^9/L$ during ruxolitinib run-in
- Splenic irradiation within three months
- Peripheral blood or bone marrow blast count ≥ 10%
- Active serious infection or uncontrolled intercurrent illness

Figure 7: 220 Global Sites Across 19 Countries (US, Europe, and Asia-Pacific)

Country (Sites)

United States	(64)	Australia	(11)	Belgium	(5)
Italy	(19)	South Korea	(9)	Czech Republic	(5)
France	(14)	Croatia	(7)	Greece	(5)
Germany	(14)	Austria	(6)	Romania	(5)
Poland	(12)	Georgia	(6)	Hungary	(4)
Spain	(12)	Portugal	(6)	Serbia	(4)
UK	(12)				

1. Schieber M, et al. Blood Cancer J. 2019. 2. Verstovsek S. et al. NEJM. 2012.

- 3. Harrison C, et al. NEJM. 2012. 4. Vannucchi A, et al. Haematologica. 2015. 5. Maffioli M, et al. Blood Adv. 2022.
- 6. Mesa R, et al. J Hematol Oncol. 2013. 7. Nakatake M, et al. *Oncogene*. 2012. 8. Levine AJ, et al. Nat Rev Cancer. 2009. 9. Brady CA, et al. J Cell Sci. 2010.
- 11. Clevenger T, et al. EHA 2023.

10. Kastenhuber ER, et al. Cell. 2017

12. Mascarenhas J, et al. EHA 2023.

BID, twice daily; BL, baseline; BM, bone marrow; C1D1, cycle 1 day 1; CALR, calreticulin; CT, computed tomography; ECOG, Eastern Cooperative Oncology Group; Gr, grade; IPSS, International Prognostic Scoring System; ITT, intention-to-treat; JAK, Janus kinase; JAK2, Janus kinase 2; JAKi, Janus kinase inhibitor; MF, myelofibrosis; MFSAF, myelofibrosis symptom assessment form; MRI, magnetic resonance imaging; Nvtm, navtemadlin; QD, once daily; Rux, ruxolitinib; SVR, spleen volume reduction; SVR35, spleen volume reduction ≥ 35%; TSS, total symptom score; TSS50, total symptom score reduction ≥ 50%; VAF, variant allele frequency; WBC, white blood cell; WHO, World Health Organization; Wk, week; WT, wild-type; Yrs, years.

ANC, absolute neutrophil count; ASCT, allogeneic stem cell transplant;

The authors thank the co-investigators, patients, families, and caregivers who are participating in the study. This study is funded by Kartos Therapeutics Inc, Redwood City, CA. Editorial support was provided by Cognition Studio, Inc. and funded by Kartos Therapeutics.