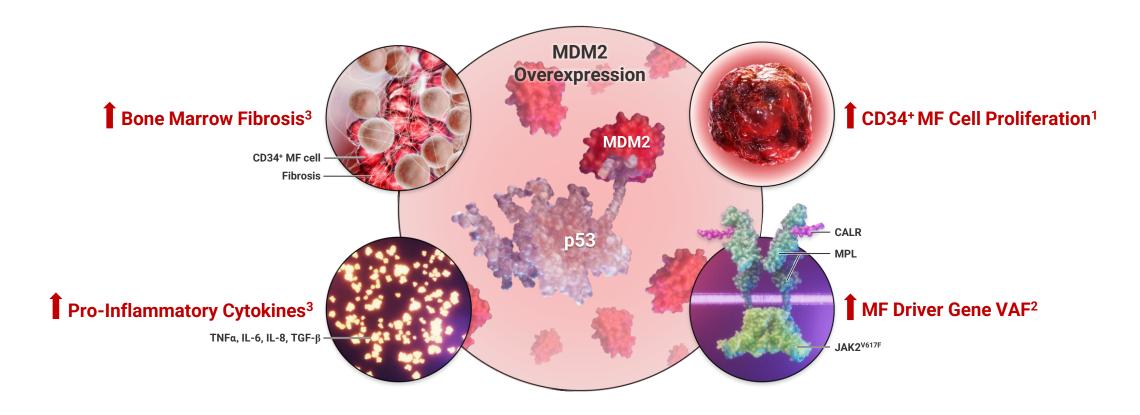
Abstract #483

8 December 2024

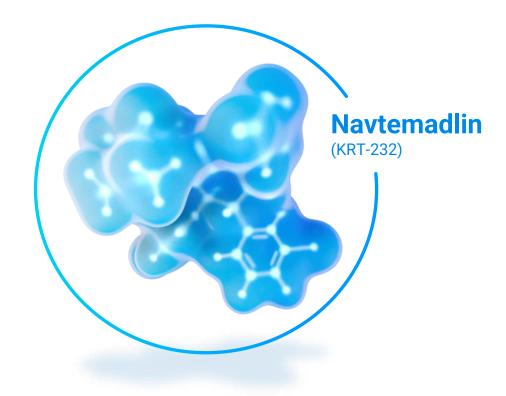
Disease-Modifying Activity of Navtemadlin Correlates With Clinical Responses in the Randomized, Multicenter, Global Phase 3 Study BOREAS in JAK Inhibitor Relapsed/Refractory Myelofibrosis


John O. Mascarenhas, MD¹; Prithviraj Bose, MD²; Hsin-An Hou, MD, PhD, MSc³; Wojciech Homenda, MD, PhD⁴; David Ross, MBBS, PhD⁵; Sanjay R Mohan, MD, MSc⁶; Jean-Jacques Kiladjian, MD, PhD⁷; Haifa Kathrin Al-Ali⁸; Andrew Charles Perkins, MBBS, PhD⁹; Yulia Khalina, BSc¹⁰; Tracy Clevenger, PhD¹⁰; Zhuying Huang, PhD¹⁰; Jesse McGreivy, MD¹⁰; Wayne Rothbaum, MA¹⁰; Srdan Verstovsek, MD, PhD¹⁰; and Alessandro M. Vannucchi, MD¹¹

¹Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY. ²Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX. ³Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan. ⁴Department of Hematology and Bone Marrow Transplantation, Pomeranian University, Slupsk, Poland. ⁵Royal Adelaide Hospital and SA Pathology, Adelaide, Australia. ⁶The Vanderbilt Clinic, Nashville, TN. ⁷Hopital Saint-Louis, Paris, France. ⁸University Hospital Halle, Halle (Saale), Germany. ⁹The Alfred Hospital and Monash University, Melbourne, Australia. ¹⁰Kartos Therapeutics, Inc., Redwood City, CA. ¹¹University of Florence, Florence, Italy

Hallmarks of Myelofibrosis

MDM2 Overexpression Prevents p53-Driven Apoptosis of CD34⁺ MF Cells

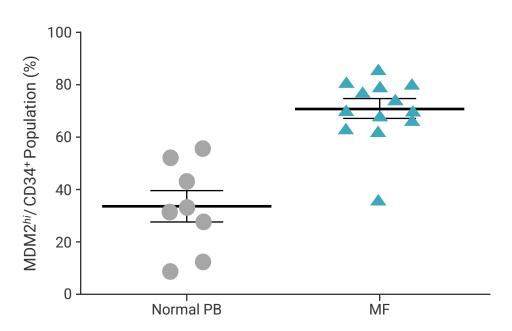


¹Barosi G, et al. *Blood* 2001. ²Rampal R, et al. *Blood* 2014. ³Verstovsek S, et al. *NEJM* 2010. Abbreviations: CALR, calreticulin; IL, interleukin; JAK2, Janus kinase 2; MDM2, mouse double minute 2; MF, myelofibrosis; MPL, myeloproliferative leukemia virus oncogene; TGF-β, transforming growth factor beta; TNFα, tumor necrosis factor alpha; VAF, variant allele frequency.

Navtemadlin is a Novel p53 Potentiating Anticancer Agent

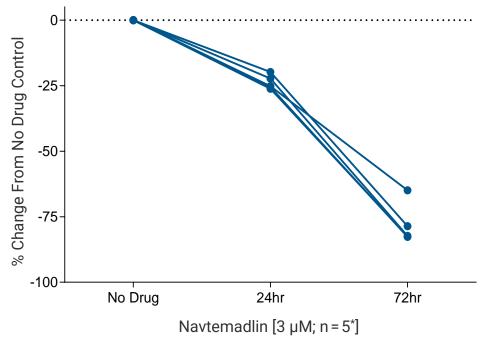
Navtemadlin is a potent, selective, orally available best-in-class inhibitor of MDM2^{1,2} that restores p53 function:

- Binding affinity = 0.045 nM²
- $IC_{50} = 9.1 \text{ nM}^2$
- Constant oral clearance across doses³
- Rapid absorption $(1-3 \text{ hour } T_{\text{max}})^3$
- $T_{1/2} = 17 \text{ hours}^3$



¹Canon J, et al. *Mol Cancer Ther*. 2015. ²Sun D, et al. *J Med Chem*. ³Ma SC, et al. *Blood*. 2019. Abbreviations: IC₅₀, half maximal inhibitory concentration; MDM2, mouse double minute 2; MPN, myeloproliferative neoplasms; nM, nanomolar; T_{1/2}, half-life; T_{max}, time to maximum concentration.

MDM2 Overexpression in Myelofibrosis


Navtemadlin Induces p53-Dependent Apoptosis of CD34⁺ MF Cells

MDM2 Overexpression in CD34⁺ MF Cells¹

MDM2 overexpression in circulating CD34⁺ MF progenitors²

Navtemadlin Induces Apoptosis of CD34⁺ MF Cells³

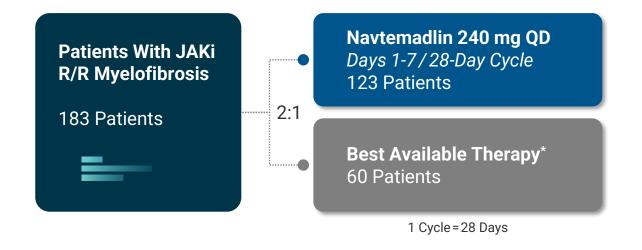
Navtemadlin induces apoptosis of *TP53*^{WT} CD34⁺ MF progenitors by overcoming MDM2 dysregulation³

Note: 95% of MF patients are TP53WT

¹Figure adapted from Lu M, et al. *Blood* 2017. ²Nakatake M, et al. *Oncogene* 2012. ³Clevenger T, et al. EHA 2023. *CD34* cells collected from MF patients were co-cultured with stromal support layer. Clinically relevant concentrations were used (In vivo C_{max} of navtemadlin = 2.7 μM [~240 mg QD]). Abbreviations: MDM2, mouse double minute 2; MF, myelofibrosis; PB, peripheral blood; WT, wild-type.

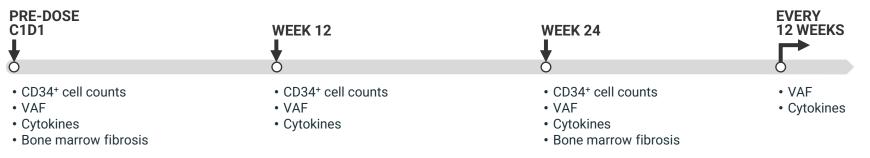
Phase 3 Study Design

A Randomized, Open-Label, Global Phase 3 Study of Navtemadlin in *TP53*^{WT} Subjects With Myelofibrosis Who Are Relapsed or Refractory to JAK Inhibitor Treatment



Stratification Factors:

- · Primary MF vs Secondary MF
- Baseline TSS (≤10 vs >10)


Physician's Choice (BAT):

- Hydroxyurea
- Peginterferon
- IMiDs
- Supportive care

EXPLORATORY ENDPOINTS

- CD34⁺ cell count in peripheral blood
- Variant allele frequency (VAF)
- Cytokines
- Bone marrow fibrosis

Note: BOREAS enrollment was closed at 183 subjects.

*Crossover permitted in the BAT arm after disease progression or at Week 24.

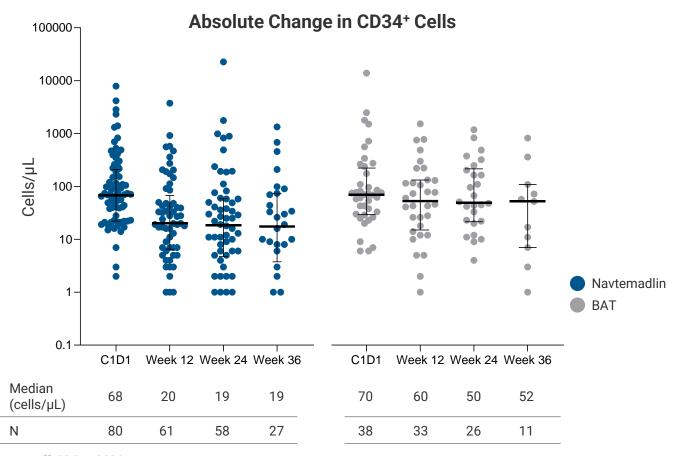
Abbreviations: BAT, best available therapy; C1D1, cycle 1 day 1; IMiDs, immunomodulatory imide drugs (lenalidomide, pomalidomide); JAK, Janus kinase; JAKi, Janus kinase inhibitor; MF, myelofibrosis; QD, once daily; R/R, relapsed/refractory; TSS, total symptom score; VAF, variant allele frequency; WT, wild-type

Baseline Characteristics

	Navtemadlin n=123	Best Available Therapy n=60 ¹
MF Subtype (Primary / Secondary), n (%)	72 (59) / 51 (42)	35 (58)/25 (42)
JAKi Relapsed/Refractory, n (%)	45 (37) / 78 (63)	21 (35)/39 (65)
DIPSS (Int-1/Int-2/High), n (%)	44 (36)/60 (49)/19 (15)	19 (32)/32 (53)/9 (15)
TSS, Median (range) TSS > 10, n (%)	20.8 (1.7, 64.3) 94 (76)	20.1 (0, 63.8) 46 (77)
Spleen Volume (cm³), Median (range)	2321 (184, 5210)4	2242 (516, 6002)
Driver Mutations, n (%) JAK2 ^{V617F} CALR MPL Triple Negative	89 (72) 22 (18) 5 (4) 7 (6)	39 (65) 16 (27) 1 (2) 4 (7)
High Molecular Risk Mutations, n (%) ² ≥1 ≥2 ASXL1 EZH2	76 (62) 29 (24) 69 (56) 19 (15)	41 (68) 14 (23) 36 (60) 4 (7)
Bone Marrow Fibrosis Score, n (%) ³ Grade 1 Grade 2 Grade 3	11 (9) 43 (35) 57 (46)	6 (10) 21 (35) 22 (37)

Data cut-off: 30 Sep 2024.

Note: Navtemadlin dosed at 240 mg QD (Days 1-7/28-day cycle).


Abbreviations: ASXL1, additional sex combs like 1; CALR, calreticulin; DIPSS, Dynamic International Prognostic Scoring System; EZH2, enhancer of zeste homolog 2; Int, intermediate; JAK2, Janus kinase 2; JAKi, Janus kinase inhibitor; LLCM, left lower costal margin; MF, myelofibrosis; MPL, myelofibrosis; MP

¹One subject randomized to BAT, first cycle was navtemadlin. ²HMR included ASXL1, EZH2, IDH1/2, SRSF2, U2AF1; >3% VAF cut-off.

³Samples assessed by central lab (Navtemadlin: n=111, BAT: n=49). ⁴One subject with baseline spleen volume <450 cm³ had palpable spleen ≥5 cm LLCM.

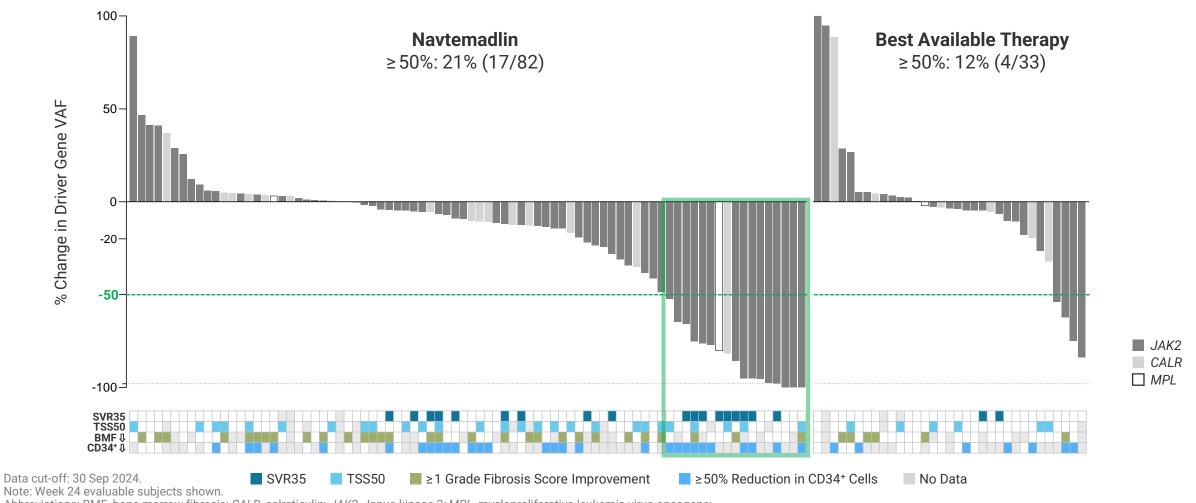
Navtemadlin Reduces Circulating CD34⁺ Cells

Median % Change CD34+ Cells (Baseline Paired)1

Median % Change	Navtemadlin	ВАТ
Week 12	-68% n = 50	-52% n = 25
Week 24	-70% n = 48	-38% n=19
Week 36	-76% n = 21	-33% n = 9

Data cut-off: 30 Sep 2024.

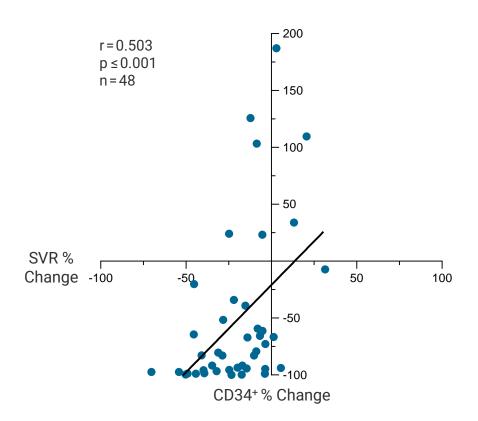
Note: Navtemadlin dosed at 240 mg QD (Days 1-7/28-day cycle). Peripheral blood CD34+ cells normal range ≤7 cells/µL.


¹Required to have a baseline and a second timepoint.

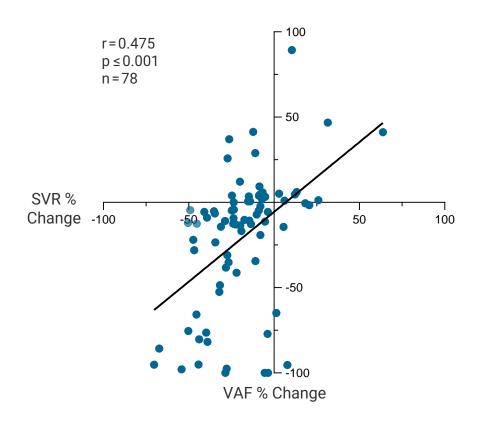
Abbreviations: BAT, best available therapy; C1D1, cycle 1 day 1.

Navtemadlin Reduces Driver Gene VAF

Driver Gene VAF Reduction by Central Laboratory - Baseline to Week 24


Note: Week 24 evaluable subjects shown.

Abbreviations: BMF, bone marrow fibrosis; CALR, calreticulin; JAK2, Janus kinase 2; MPL, myeloproliferative leukemia virus oncogene; SVR35, spleen volume reduction ≥35%; TSS50, total symptom score reduction ≥50%; VAF, variant allele frequency.


CD34⁺ and VAF Changes Correlate with SVR

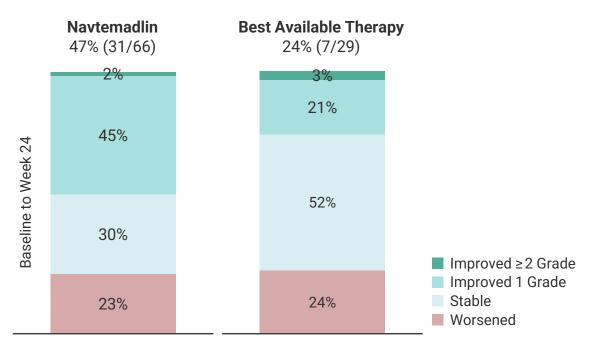
Navtemadlin Reduces Circulating CD34⁺ and Driver Gene VAF – Baseline to Week 24

Circulating CD34⁺ Cells at Week 24

Driver Gene VAF at Week 24

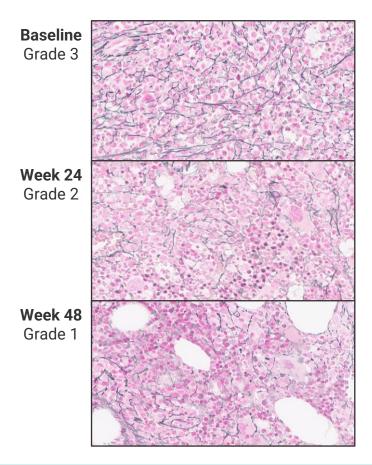
Data cut-off: 30 Sep 2024.

Note: BAT correlations - CD34+ r=0.521, p=0.027; VAF r=0.337, p=0.069. Baseline to Week 24.


Abbreviations: BAT, best available therapy; SVR, spleen volume reduction; VAF, variant allele frequency.

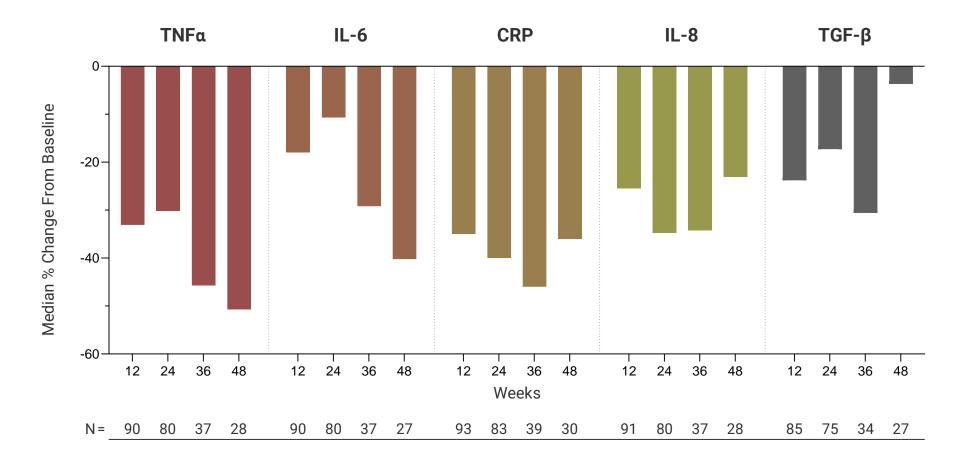
Navtemadlin Improves Bone Marrow Fibrosis

Bone Marrow Fibrosis Improvement - Baseline to Week 24


Fibrosis Improvement by Central Pathology Review

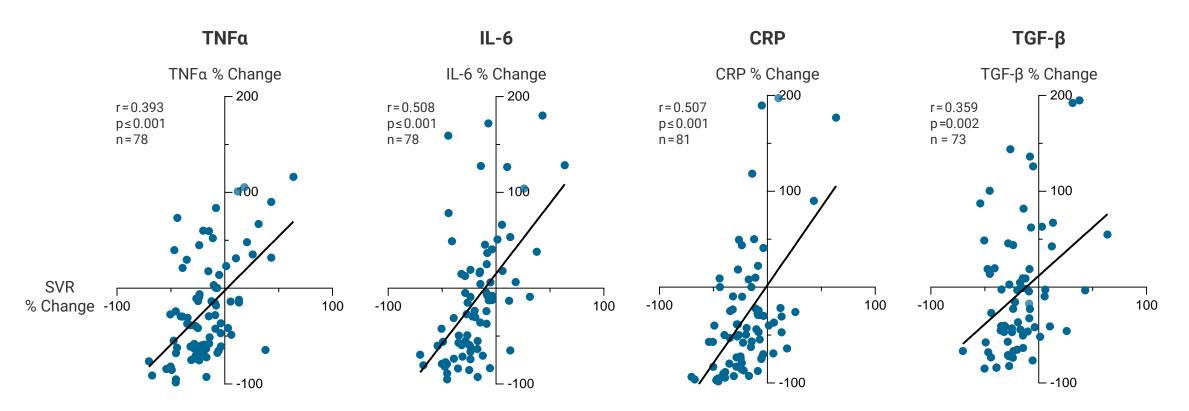
Bone Marrow Fibrosis Scores

Data cut-off: 30 Sep 2024. Note: Images at 40X. Baseline to Week 24. *Navtemadlin-treated patient. Abbreviations: BAT, best available therapy; BM, bone marrow.


BM Morphology Over Time*

Reductions in Pro-Inflammatory Markers

Navtemadlin Reduces Serum Cytokine Levels Over Time



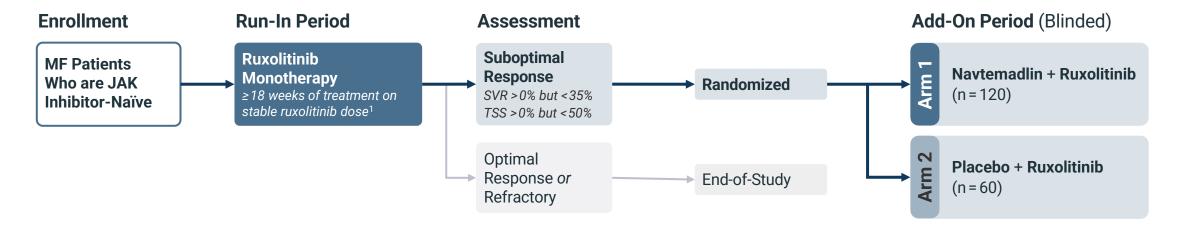
Data cut-off: 30 Sep 2024.
Abbreviations: CRP, C-reactive protein; IL, interleukin; TGF-β, transforming growth factor beta; TNFα, tumor necrosis factor alpha.

Reductions in Inflammatory Markers Correlate With SVR

Navtemadlin Reduces Pro-Inflammatory Markers - Baseline to Week 24

Data cut-off: 30 Sep 2024.

Note: BAT correlations - TNFα r=0.372, p=0.051; IL-6 r=0.579, p=0.001; CRP r=0.556, p=0.003.


Abbreviations: BAT, best available therapy; CRP, C-reactive protein; IL, interleukin; SVR, spleen volume reduction; TGF-β, transforming growth factor beta; TNFα, tumor necrosis factor alpha.

Navtemadlin in Suboptimal Responders to Ruxolitinib

A Phase 3 Randomized, Double-Blind, Add-On Study Evaluating the Safety and Efficacy of Navtemadlin and Ruxolitinib vs Placebo and Ruxolitinib in JAK Inhibitor-Naïve Patients With Myelofibrosis Who Have a Suboptimal Response to Ruxolitinib Treatment

Run-In Period (N = 600)

Key Inclusion Criteria

- · Primary or secondary MF by WHO criteria
- Int-1, Int-2, or High-risk disease by IPSS
- Spleen volume ≥ 450 cm³
- Platelet count ≥100 x 10⁹/L

Add-On Period (N = 180)

Key Inclusion Criteria

- TP53WT by central testing
- Treatment with a stable dose of ruxolitinib
- Suboptimal response to ruxolitinib run-in

Endpoints

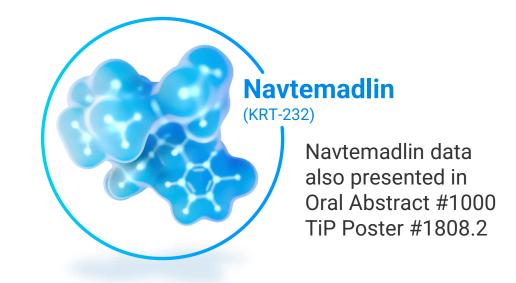
Co-Primary Endpoints

 Targeted SVR and TSS reduction 24 weeks after randomization

Note: Navtemadlin dosed at 240 mg QD (Days 1-7/28-day cycle). Target enrollment from 220 sites across 19 countries.

¹Stable ruxolitinib is ≥ 5 mg BID that does not require treatment hold or dose adjustment during the eight weeks prior to add-on navtemadlin or placebo.

Abbreviations: BID, twice daily; Int, intermediate; IPSS, International Prognostic Scoring System; JAK, Janus kinase; MF, myelofibrosis; TSS, total symptom score; WHO, World Health Organization; WT, wild-type.


Conclusion

- BOREAS is the first global phase 3 study conducted solely in patients with myelofibrosis who
 are R/R to JAKi treatment to report results
- Navtemadlin monotherapy improved biomarkers of disease burden in R/R myelofibrosis, suggestive of anti-clonal activity and disease modification
- Navtemadlin-mediated reductions in circulating CD34⁺ cell counts, driver mutation burden, and serum inflammatory cytokine levels were significantly correlated with magnitude of SVR – a key clinical outcome predictive of quality of life and overall survival
- Biomarkers of disease modification and associated clinical correlations will be further explored
 with navtemadlin as add-on therapy to ruxolitinib in JAKi-naïve myelofibrosis patients who have
 a suboptimal response to ruxolitinib treatment (POIESIS; NCT06479135)

Abbreviations: JAKi, Janus kinase inhibitor; R/R, relapsed/refractory; SVR, spleen volume reduction.

Acknowledgments

- We thank all investigators, patients, families, and caregivers who are participating in this study
- We thank Dr. Ronald Hoffman for his pioneering work on MDM2 in myeloproliferative neoplasms
- This study is funded by Kartos Therapeutics, Redwood City, CA
- Editorial and graphics support provided by Cognition Studio, Inc

